Journal of Organometallic Chemistry, 359 (1989) C57-C60 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

The reaction of *N*-phenyldialkynylimines with η^5 -cyclopentadienyldicarbonylcobalt

Yoshihiko Ito *, Masahiko Inouye, Masahiro Murakami

Department of Synthetic Chemistry, Kyoto University, Kyoto 606 (Japan)

and Motoo Shiro

Shionogi Research Laboratories, Fukushima-ku, Osaka 553 (Japan) (Received September 9th, 1988)

Abstract

N-Substituted dialkynylimines react with η^5 -cyclopentadienyldicarbonylcobalt to give a mixture of η^4 -cyclobutadiene cobalt complexes, the structures of which have been determined by X-ray crystallography.

Cobalt-mediated cyclo-oligomerizations of alkynes have been intensively studied [1], and have been developed into a versatile synthetic method [2]. In addition, the reactions of alkynes with cobalt(I) complexes such as $Co(CO)_2Cp$ and $Co(PPh_3)_2Cp$ have often given the corresponding η^4 -cyclobutadiene cobalt complexes [3]. Here we report the reaction of N-substituted dialkynylimines with η^5 -cyclopentadienyldicarbonylcobalt to give a mixture of η^4 -cyclobutadiene cobalt complexes (3, 5 and 6), the structures of which have been determined by X-ray crystallography.

Unlike dialkynyl ketones which are thermally less stable, N-phenyldialkynylimines could be subjected to reaction with η^{5} -cyclopentadienyldicarbonylcobalt at high temperature (ca. 165°C) to form a new type of η^{4} -cyclobutadienecobalt complex. To a solution of N-phenyldialkynylimine (1, 1.0 mmol), which was prepared by palladium-catalyzed coupling of N-phenyl isocyanide dichloride with an alkynyltin compound [4], in mesitylene (3 ml), was added Cp(CO)₂Co (1.0 mmol) in mesitylene (15 ml) during ca. 1 h at 165°C. After 30 min stirring at that temperature, the solvent was removed in vacuo and the residue was subjected to TLC on silica gel (n-hexane: ether = 20:1) to give the η^{4} -cyclobutadiene cobalt complexes (3, 5 and 6) as shown in Scheme 1. Dialkynylimines (1c and 1d) give only η^{4} -cyclobutadienecobalt complexes (3c and 3d, respectively). However, the dialkynylimines (1a and 1b) give not only 3a and 3b, but also the bis(cyclopentadienylcobalt) complexes (5a and 5b), which are marked by a novel structure of diethenop-benzoquinone diimine [5a: m.p. > 290°C; IR (KBr) 1584 (C=N) cm⁻¹; ¹H NMR

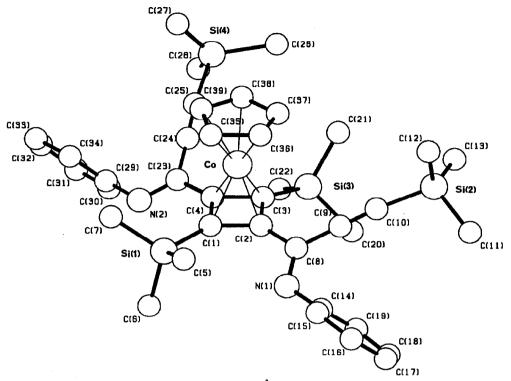


Fig. 1. Structure of 3a. Selected bond lengths (Å) and angles (°): Co-Y 1.674(1), Co-Z 1.666(2), C(1)-C(2) 1.46(1), C(2)-C(3) 1.50(1), C(3)-C(4) 1.46(1), C(1)-C(4) 1.48(1), Y-Co-Z 178.3(5). Co-Y = vertical line from Co to mean plane of cyclobutadiene ring. Co-Z = vertical line from Co to mean plane of cyclobutadiene ring.

(CDCl₃) δ 0.09 (s, 36H), 4.77 (s, 10H), 6.91–7.35 (m, 10H); ¹³C NMR (CDCl₃) δ 1.67, 81.53, 119.82, 122.72, 129.69, 151.91, 160.18; UV (CH₂Cl₂) λ_{max} 425 ($\epsilon =$ 11900), 305 (31300), 249 (43200) nm; MS (20 eV) m/z 842 (M^+). Anal. Found: C, 62.72; H, 6.72; N, 3.44. C₄₄H₅₆N₂Si₄Co₂ calcd.: C, 62.68; H, 6.69; N, 3.32%. **5b**: m.p. > 290°C; IR (KBr) 1582 (C=N) cm⁻¹; ¹H NMR (CDCl₃) δ 5.11 (s, 10H), 6.63–7.87 m, 30H); ¹³C NMR (CDCl₃) δ 164.52 (C=N); FD-MS, m/z 858 (M^+)]. The structures of **3a** * and **5a** have been determined by X-ray crystallography **

^{*} Physical and spectral data. For 3a: m.p. 189-191°C; IR (KBr): 2270 (C=C), 1558 (C=N) cm⁻¹; ¹H NMR (CDCl₃, cyclohexane as internal standard): δ 0.13 (s, 18H), 0.39 (s, 18H), 5.00 (s, 5H), 6.85-7.38 (m, 10H); ¹³C NMR (CDCl₃): δ -0.70, 1.62, 72.35, 81.87, 86.12, 99.65, 102.74, 120.44, 124.34, 128.21, 150.29, 151.63; UV (CH₂Cl₂): λ_{max} 347 (ε = 19300), 294 (26200), 248 (29000) nm; MS (24 eV): m/z 718 (M⁺). Anal. Found: C, 65.13; H, 7.11; N, 3.92. C₃₅H₅₁N₂Si₄Co calcd.: C, 65.14; H, 7.15; N, 3.90%. For 6a: m.p. 259-261°C; IR (KBr): 1576 (C=N) cm⁻¹; ¹H NMR (CDCl₃): δ 0.09 (s, 36H), 5.20 (s, 10H), 6.90-7.56 (m, 10H); ¹³C NMR (CDCl₃): δ 1.98, 81.04, 121.81, 123.07, 129.21, 151.49, 161.28; MS (20 eV): m/z 842 (M⁺).

^{**} Crystal data for 3a: $C_{39}H_{51}N_2Si_4Co$, M = 719.1, triclinic, space group $P\overline{1}$, a 13.058(4), b 15.058(4), c 12.541(5) Å, a 101.40(3), $\beta 116.85(3)$, $\gamma 86.42(3)^{\circ}$, U 2156(1) Å³, $D_c 1.108$ g cm⁻³ for Z = 2, F(000) = 764, $\lambda(Mo-K_{\alpha}) 0.71069$ Å, $\mu 5.49$ cm⁻¹, $T 25^{\circ}C$, crystal size $0.3 \times 0.3 \times 0.3$ mm. For 5a: $C_{44}H_{56}N_2Si_4Co_2$, M = 843.2, tetragonal, space group $I4_1/a$, a 24.726(6), c 14.554(5) Å, U 8898(4) Å³, $D_c 1.259$ g cm⁻³ for Z = 8, F(000) = 3552, $\lambda(Mo-K_{\alpha}) 0.71069$ Å, $\mu 9.12$ cm⁻¹, $T 25^{\circ}C$, crystal size $0.4 \times 0.4 \times 0.4$ mm.

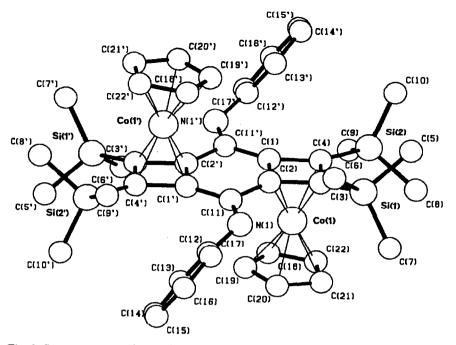
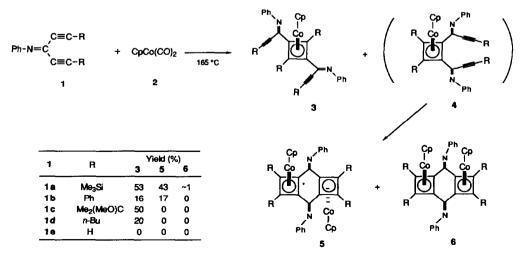
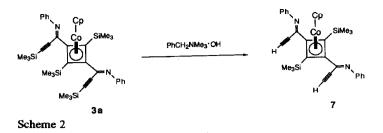




Fig. 2. Structure of 5a. The two halves of the molecule are related by an inversion center in the crystal, so that symmetry-related atoms in one of a pair are primed in the other. Selected bond lengths (Å) and angles (°): Co(1)-Y(1) 1.692(1), Co(1)-Z(18) 1.692(2), C(1)-C(2) 1.459(4), C(2)-C(3) 1.473(4), C(3)-C(4) 1.504(4), C(1)-C(4) 1.484(4), Y(1)-Co(1)-Z(18) 174.0(2). Co(1)-Y(1) = vertical line from Co(1) to mean plane of cyclobutadiene ring containing C(1). Co(1)-Z(18) = vertical line from Co(1) to mean plane of cyclopentadiene ring containing C(18).

and are shown in Figures 1 and 2, together with selected bond lengths and angles. The structure of $6a^*$, which was not interconvertible to 5a, was deduced on the basis of ¹H NMR, ¹³C NMR, IR, and MS data, which are similar to those for 5a.

Scheme 1

The present reaction of 1a with 2 may be explained in terms of competitive head-to-tail and head-to-head cyclodimerizations of 1a to produce, respectively, 3a and 4a, with 4a undergoing further intramolecular cyclization to give 5a and 6a.

While N-phenyldiethynylimine (1e, R = H) is thermally unstable and gives only a tarry substance after reaction with 2, 3a was readily protodesilylated to afford 7 in a high yield (98%), after treatment with N-benzyltrimethylammonium hydroxide (Scheme 2).

Attempts to hydrolyze the imino group of the η^4 -cyclobutadiene cobalt complexes (3 and 5) to the corresponding carbonyl group have been unsuccessful.

The intensity data, 6357 independent reflections for 3a and 3289 for 5a, were collected on a Rigaku AFC-5R diffractometer in the region of $0.2 \le 2\theta \le 47^{\circ}$ using an $\omega - 2\theta$ scan technique ($\Delta \omega = A + 0.5 \tan \theta$, $A = 1.4^{\circ}$ for 3a and 0.8° for 5a). Absorption corrections for the spherical crystals were approximate, transmission factors being constant in the range of 2θ , viz., 0.885 for 3a and 0.847 for 5a. The structures were solved by the heavy atom method; H atoms, except those in the methyl groups, were located from difference electron density maps. The positional parameters for all the atoms and the anisotropic thermal parameters for the non-H atoms were refined by the block-diagonal least squares. Temperature factors for each H atom were taken to be equal to B_{eq} of the atom to which it is bonded. Atomic scattering factors were calculated by the analytical form [5]. No anomalous dispersion corrections were applied because of the small f' and f'' values for Co and Si. Final R, R_w and S values were respectively 0.088, 0.127 and 1.199 for 3a, and 0.043, 0.055 and 1.082 for 5a. Weights were taken as $w = [\sigma^2(F_0) + c^2 |F_0|^2]^{-1}$ $(c^2 = 0.00761 \text{ for } 3a \text{ and } 0.00146 \text{ for } 5a)$ for the reflections with $w^{1/2} |F_0| > 3$ and $w^{1/2} |\Delta F| < 4$, and otherwise w = 0.4012 reflections were used for the least-squares refinement for 3a, and 2637 for 5a. $\Delta \rho_{\text{max}}$ and $(\Delta/\sigma)_{\text{max}}$ were 0.7 e Å⁻³ and 0.4 for 3a, and 0.5 e Å⁻³ and 0.2 for 5a, respectively. The large *R*-value for 3a may be due to the poor quality of the crystal. Tables of atomic co-ordinates and thermal parameters, and complete lists of bond lengths and angles have been deposited at the Cambridge Crystallographic Data Centre.

References

- 1 K. Yasufuku, A. Hamada, K. Aoki and H. Yamazaki, J. Am. Chem. Soc., 102 (1980) 4363.
- 2 K.P.C. Vollhardt, Acc. Chem. Res., 10 (1977) 1.
- 3 A. Efraty, Chem. Rev., 77 (1977) 691.
- 4 Y. Ito, M. Inouye and M. Murakami, Tetrahedron Lett., in press.
- 5 International Tables for X-ray Crystallography, Vol. IV, Kynoch Press, Birmingham, 1974, p. 99.